
ISRAEL JOURNAL OF MATHEMATICS 157 (2006), 333–345

DOI: 10.1007/s11856-006-0015-1

ON THE POSITIVITY SET

OF A LINEAR RECURRENCE SEQUENCE

BY

Jason P. Bell

Department of Mathematics, Simon Fraser University

8888 University Drive, Burnaby,BC Canada V5A 1S6

e-mail: jpb@sfu.ca

AND

Stefan Gerhold∗

Christian Doppler Laboratory for Portfolio Risk Management

Vienna University of Technology, Wiedner Hauptstraße 8-10/105-1, Austria

e-mail: sgerhold@fam.tuwien.ac.at

ABSTRACT

We consider real sequences (fn) that satisfy a linear recurrence with

constant coefficients. We show that the density of the positivity set of

such a sequence always exists. In the special case where the sequence has

no positive dominating characteristic root, we establish that the density is

positive. Furthermore, we determine the values that can occur as density

of such a positivity set, both for the special case just mentioned and in

general.

1. Introduction and main results

A sequence (fn)n≥0 of real numbers is called a (linear) recurrence sequence if it

satisfies a linear recurrence

fn+h = c1fn+h−1 + · · · + ch−1fn+1 + chfn, n ≥ 0,
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with constant coefficients ck ∈ R. (Since we are concerned with questions of

positivity, we restrict attention to real sequences.) One of the most charming

and celebrated results in the theory of recurrence sequences is the Skolem–

Mahler–Lech theorem. It asserts that the zero set

{n ∈ N: fn = 0}

of a recurrence sequence is the union of a finite set and finitely many arithmetic

progressions. The recent comprehensive monograph by Everest et al. [3] contains

references to the substantial literature devoted to this result and to related

questions. However, not much seems to be known about the positivity set

(1) {n ∈ N: fn > 0}.

In the following section we establish that the density of the set (1) always exists,

where the density of a set A ⊆ N is defined as

δ(A) := lim
x→∞

x−1♯{n ≤ x: n ∈ A},

provided that the limit exists.

Theorem 1: Let (fn) be a recurrence sequence. Then the density of the set

{n ∈ N: fn > 0} exists.

Recall that a recurrence sequence can be written as a generalized power sum

(2) fn =

m∑

k=0

Pk(n)γn
k , n ≥ 0,

with non-zero polynomials Pk ∈ C [n] and roots γk ∈ C that are roots of the

characteristic polynomial

zh − c1z
h−1 − · · · − ch−1z − ch

of the recurrence. The roots of largest modulus are called dominating roots of

(fn).

It does not come as a surprise that recurrence sequences with no positive

dominating root have oscillating behaviour. Indeed, in Section 3 we prove that

for such a sequence (fn) the densities of (1) and the negativity set

(3) {n ∈ N: fn < 0}

are always positive. This generalizes the following known result [1, 4]: If a

recurrence sequence has at most four dominating roots, and none of them is

real positive, then the sets (1) and (3) both have infinitely many elements.
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Theorem 2: Let (fn) be a nonzero recurrence sequence with no positive dom-

inating characteristic root. Then the sets {n ∈ N: fn > 0} and {n ∈ N: fn < 0}
have positive density.

In Section 4 we investigate which numbers actually occur as density of the

positivity set of some recurrence sequence. It turns out that all possible values

occur, both for sequences with no dominating positive root and in general.

Finally (Section 5), we return to the Skolem–Mahler–Lech theorem. Our

approach yields the following weak version: The density of the zero set exists

and is a rational number.

2. The density of the positivity set

Notation: We write (fn) ≡ 0 if fn = 0 for all n ≥ 0. The Lebesgue measure of

a set B ⊂ Rm is denoted by λ(B).

The goal of this section is to prove Theorem 1. Dividing fn by nD|γ1|n,

where γ1 is a dominating root of (fn) and D is the maximal degree of the Pk

with |γk| = |γ1|, we obtain from (2)

n−D|γ1|−nfn =

d∑

i=1

ai cos(2πθin + βi) + v − rn,

where (rn) is a recurrence sequence with rn = O(1/n), θ1, . . . , θd are in ]0, 1[,

and ai, βi, v ∈ R. From now on we will assume w.l.o.g. D = 0 and |γ1| = 1. As

a first step we get rid of any integer relations that the θi might satisfy.

Lemma 3: Let θ1, . . . , θd be real numbers. Then there is a basis {τ1, . . . , τm+1}
of the Z-module

M = Z+Zθ1 + · · · +Zθd

such that 1/τm+1 is a positive integer and 1, τ1, . . . , τm are linearly independent

over Q.

Proof: M is finitely generated and torsion free, hence it is free [7, Theo-

rem III.7.3]. Let {α1, . . . , αm+1} be a basis. Since 1 ∈ M , there are integers

e1, . . . , em+1 such that

e1α1 + · · · + em+1αm+1 = 1.

We complete (e1/g, . . . , em+1/g), where g := gcd(e1, . . . , em+1), to a unimodular

integer matrix C with last row (e1/g, . . . , em+1/g) [7, §XXI.3]. Then

(τ1, . . . , τm+1)
T := C(α1, . . . , αm+1)

T
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yields a basis of M with τm+1 = 1/g ∈ Q. Now suppose

u1τ1 + · · · + umτm = u

for integers u1, . . . , um, u. Since u has also the representation

ugτm+1 = u,

it follows that u1 = . . . = um = u = 0.

Take τ1, . . . , τm+1 as in Lemma 3, with τm+1 = 1/g. Roughly speaking, we

have put all integer relations among the θi into the rational basis element τm+1.

There are integers bij with

θi =

m+1∑

j=1

bijτj .

Now we split the sequence (fn) into the subsequences (fgn+k)n≥0 for 0 ≤ k < g.

We have

fgn+k = Gn − sn,

where sn := rgn+k and Gn is the dominant part. Defining the integer matrix

B := (gbij) 1≤i≤d

1≤j≤m

∈ Zd×m

and the real vector c = (c1, . . . , cd) with

ci := 2πk

m+1∑

j=1

bijτj + βi, 1 ≤ i ≤ d,

it can be written as (cos is applied component-wise)

Gn = aT cos(2πnBτ + c) + v.

We show that the density of {n ∈ N: fgn+k > 0} exists for each k. Since (sn) is

a recurrence sequence with fewer characteristic roots than (fn), we may assume

inductively that δ({n ∈ N: sn < 0}) exists. Thus, if (Gn) ≡ 0, we are done. Now

let k be such that (Gn) is not the zero sequence. It is plain that Gn = H(nτ),

where

H(t) := aT cos(2πBt + c) + v, t ∈ [0, 1]m.

The following theorem shows that the function H can be used to evaluate the

density of the positivity set of (Gn), which equals, as we will see below, that of

the set {n: fgn+k > 0}.
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Theorem 4 (Kronecker–Weyl): Let τ1, . . . , τm be real numbers such that

1, τ1, . . . , τm are linearly independent over Q. Then the sequence (nτ) is uni-

formly distributed modulo one, i.e., for every Jordan measurable set A ⊆ [0, 1]m

we have

δ({n ∈ N: nτ mod 1 ∈ A}) = λ(A).

Proof: We refer to Cassels [2, Theorems IV.I and IV.II].

We define

(4) Lε := {n ∈ N: Gn ≥ ε} and Sε := {n ∈ N: |Gn| < ε}.

The corresponding sets for the function H are defined as

L̃ε := {t ∈ [0, 1]m: H(t) ≥ ε} and S̃ε := {t ∈ [0, 1]m: |H(t)| < ε}.

Since for all ε ≥ 0

Lε = {n ∈ N: nτ mod 1 ∈ L̃ε},

we have δ(Lε) = λ(L̃ε) for all ε ≥ 0 by Theorem 4. Similarly,

(5) δ(Sε) = λ(S̃ε), ε > 0.

Note that the boundary of the bounded set S̃ε (respectively L̃ε) is a Lebesgue

null set (as seen by applying the following lemma with F (t) = H(t)− ε), hence

S̃ε and L̃ε are Jordan measurable, and Theorem 4 is indeed applicable. Lemma 5

seems to be known [6], but we could not find a complete proof in the literature.

Lemma 5: Let F : Rm → R be a real analytic function. Then the zero set of F

has Lebesgue measure zero, unless F vanishes identically.

The proof of Lemma 5 is postponed to the end of this section. Since (Gn) is

not the zero sequence, the function H does not vanish identically on [0, 1]m. By

the Lebesgue dominated convergence theorem and Lemma 5 we thus find

lim
ε→0

λ(S̃ε) = 0 and lim
ε→0

λ(L̃ε) = λ(L̃0).

This yields δ({n ∈ N: Gn > sn}) = λ(L̃0) by the following lemma, which

completes the proof of Theorem 1.

Lemma 6: Let (Gn) and (sn) be real sequences with sn = o(1), and let Lε, Sε

be as in (4). Suppose that δ(Lε) and δ(Sε) exist for all ε ≥ 0, and that

lim
ε→0

δ(Lε) = δ(L0) and lim
ε→0

δ(Sε) = 0.
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Then

δ({n ∈ N: Gn > sn}) = δ(L0).

Proof: For any set A ⊆ N we write A(x) := {n ≤ x: n ∈ A}. Define

P := {n ∈ N: Gn > sn}.

Let ε > 0 be arbitrary. Take n0 such that |sn| < ε for n > n0. It follows that

♯P (x) = ♯{n ≤ n0: Gn > sn} + ♯{n0 < n ≤ x: Gn ≥ ε}
+ ♯{n0 < n ≤ x: sn < Gn < ε},

hence

|♯P (x) − ♯Lε(x)| ≤ ♯Sε(x) + o(x)

as x → ∞. Thus we have

|x−1♯P (x) − δ(L0)| ≤ |x−1♯P (x) − x−1♯Lε(x)| + |x−1♯Lε(x) − δ(L0)|
≤ x−1♯Sε(x) + |x−1♯Lε(x) − δ(L0)| + o(1).

The right hand side tends to

δ(Sε) + |δ(Lε) − δ(L0)|

as x → ∞. By assumption, this can be made arbitrarily small, which implies

δ(P ) = δ(L0).

Proof of Lemma 5: For m = 1 this is clear, since then the zero set is countable.

Now assume that we have established the result for 1, . . . , m − 1. Put

V := {(t2, . . . , tm) ∈ Rm−1 : F (·, t2, . . . , tm) vanishes identically}.

Take a real number s such that F (s, ·, . . . , ·) is not identically zero. Clearly,

F (s, t2, . . . , tm) = 0 for all (t2, . . . , tm) ∈ V . By the induction hypothesis, this

implies λ(V ) = 0. Note that V is closed, hence measurable. Since F is real

analytic in the first argument, we have

∫RχZ(t1, . . . , tm)dλ(t1) = 0

for all (t2, . . . , tm) /∈ V , where χZ is the characteristic function of the zero set

Z := {(t1, . . . , tm) ∈ Rm : F (t1, . . . , tm) = 0}.
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Since V has measure zero, this implies

∫R . . .

∫RχZ(t1, . . . , tm)dλ(t1) · · · dλ(tm) = 0.

This argument works for any order of integration, hence we obtain
∫Rm χZ = 0

by Tonelli’s theorem.

3. Sequences with no positive dominating root

In this section we prove Theorem 2. We begin by settling the two special cases

where the θi are all irrational or all rational, and then put them together.

Lemma 7: Let θ1, . . . , θd be irrational numbers, and let ai, βi be real numbers

such that the sequence

un =

d∑

i=1

ai cos(2πθin + βi)

is not identically zero. Let further (rn) be a recurrence sequence with rn = o(1).

Then the set {n ∈ N: un > rn} has positive density.

Proof: Proceeding as in the proof of Theorem 1, we can write

Gn := ugn+k = aT cos(2πnBτ + c),

where B is an integer matrix no row of which is zero, c is a real vector, and

1, τ1, . . . , τm are linearly independent over Q. If k is such that (Gn) = (ugn+k) ≡
0, then the density of {n ∈ N: Gn > sn}, where sn = rqn+k, exists by Theorem 1,

but may be zero. Now choose a k0 such that the corresponding sequence (Gn) =

(ugn+k0
) is not the zero sequence. We have Gn = H(nτ), where

H(t) := aT cos(2πBt + c).

Moreover, with the notation of the proof of Theorem 1, we have

δ({n ∈ N: Gn > sn}) = λ(L̃0).

The function H is not identically zero on [0, 1]m. But

(6)

∫ 1

0

· · ·
∫ 1

0

H(t1, . . . , tm)dt1 · · · dtm = 0,
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because no row of B is the zero vector. Hence H has a positive value on [0, 1]m,

and since it is continuous, we have λ(L̃0) > 0.

Observe that the integral in (6) need not vanish if B has a zero row, which

can only happen if the θi corresponding to this row is a rational number. This

is the reason why we consider rational θis separately.

Lemma 8: Let θ1, . . . , θd be rational numbers in ]0, 1[, and let ai, βi be real

numbers such that the purely periodic sequence

un =
d∑

i=1

ai cos(2πθin + βi)

is not identically zero. Then un has a positive and a negative value.

Proof: By the identity

q−1∑

k=0

cos
2πkp

q
+ i

q−1∑

k=0

sin
2πkp

q
=

q−1∑

k=0

e2πikp/q = 0,

valid for integers 0 < p < q, and the addition formula of cos we obtain

u0 + · · · + uq−1 = 0,

where q is a common denominator of θ1, . . . , θd.

Proof of Theorem 2: It suffices to consider the positivity set. We may write

fn = un + vn − rn,

where (rn) is a recurrence sequence with rn = o(1),

un =
d∑

i=1

ai cos(2πθin + βi),

vn =

e∑

i=d+1

ai cos(2πθin + βi),

θ1, . . . , θd are irrational, θd+1, . . . , θe are rational numbers in ]0, 1[ with common

denominator q > 0, and (un + vn) 6≡ 0. If (vn) ≡ 0, then the result follows

from Lemma 7. Now suppose (vn) 6≡ 0. Then for each k the density of the set

{n ∈ N: fqn+k > 0} exists by Theorem 1. By Lemma 8 there is k0 such that
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vqn+k0
= : v > 0. It suffices to show that the set {n ∈ N: fqn+k0

> 0} has

positive density. This is clear if (uqn+k0
) ≡ 0. Otherwise, notice that

{n ∈ N: fqn+k0
> 0} ⊇ {n ∈ N: uqn+k0

> rqn+k0
},

and the latter set has positive density by Lemma 7.

4. The possible values of the density

In this section we investigate which values from [0, 1] occur as density of some

recurrence sequence. In its basic form, the question is readily answered:

Example 9: Let w be a real number and define

fn := sin(2πn
√

2) − w.

Then, by Theorem 4,

δ({n ∈ N: fn > 0}) = λ({t ∈ [0, 1]: sin(2πt) > w})

=

{
1 w ≤ −1,
1
2 − 1

π arcsinw −1 ≤ w ≤ 1,
0 w ≥ 1.

Since the range of arcsin is [−π/2, π/2], for every κ ∈ [0, 1] this yields a recur-

rence sequence (fn) such that

δ({n ∈ N: fn > 0}) = κ.

The following proposition generalizes this example. Note that the density

of the zero set of a recurrence sequence is always a rational number by the

Skolem–Mahler–Lech theorem.

Proposition 10: Let κ be a real number and r be a rational number with

0 ≤ κ, r ≤ 1 and κ + r ≤ 1. Then there is a recurrence sequence (fn) such that

δ({n ∈ N: fn > 0}) = κ and δ({n ∈ N: fn = 0}) = r.

Proof: Suppose that r = p/q for positive integers p and q. As seen in Exam-

ple 9, there is a recurrence sequence (gn) such that the density of the zero set

of (gn) is zero and the density of its positivity set is κ/(1 − r) (The case r = 1

is trivial.) The interlacing sequence

fbn+k :=

{
0, 0 ≤ k < p
gn, p ≤ k < q
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is a recurrence sequence [3, Section 4.1]. Clearly, the density of its zero set is r,

and the density of its positivity set is

δ({n ∈ N: fn > 0}) =
q − p

q
× κ

1 − r
= κ,

as required.

If we restrict attention to sequences without real positive dominating roots,

then Theorem 2 tells us that the density of the positivity set can be neither

zero nor one. Computer experiments with numerical values for the parameters

usually yield approximations of the density that are close to 1
2 . Still, all values

in between occur.

Theorem 11: Let κ ∈ ]0, 1[. Then there is a recurrence sequence (fn) with no

positive dominating characteristic root and δ({n ∈ N: fn > 0}) = κ.

Proof: Let ε > 0 be arbitrary. We define a function H on [0, 1
2 ] by

H(t) :=

{
(ε−1)2

ε (1 − 2t
ε ), 0 ≤ t ≤ ε

2
ε − 2t, ε

2 ≤ t ≤ 1
2

and extend it to an even, 1-periodic function H on R (see Figure 1). It is

continuous and satisfies

∫ 1

0

H(t)dt = 0 and λ({t ∈ [0, 1]: H(t) > 0}) = ε.

Ε�2 1�2 1

-1 + Ε

1
������

Ε

+Ε-2

Figure 1. The function H .
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Expanding H into a Fourier series, we find that there are real aj such that H

is the pointwise limit of

Hm(t) :=

m∑

j=1

aj cos(2πjt)

as m → ∞. Since the zero set of H is a null set, the Lebesgue dominated

convergence theorem yields

lim
m→∞

λ({t ∈ [0, 1]: Hm(t) > 0}) = ε.

We fix an m such that

λ({t ∈ [0, 1]: Hm(t) > 0}) ≤ 2ε.

The function

φ(A1, . . . , Am) := λ
({

t ∈ [0, 1]:

m∑

j=1

Aj cos(2πjt) > 0
})

is continuous on Rm\{0}. To see this, observe that φ is continuous at all

points (A1, . . . , Am) for which
∑m

j=1 Aj cos(2πjt) is not identically zero and

appeal to the uniqueness of the Fourier expansion. Since φ(1, 0, . . . , 0) = 1
2

and φ(a1, . . . , am) ≤ 2ε, the function φ assumes every value from [2ε, 1
2 ] by the

intermediate value theorem.

Hence the positivity sets of the sequences

fn :=
m∑

j=1

Aj cos(2πjn
√

2)

assume all densities from [2ε, 1
2 ] for appropriate choices of (A1, . . . , Am) by The-

orem 4. Repeating the whole argument with −H instead of H yields the desired

result for κ ∈ [ 12 , 1 − 2ε]. Since ε was arbitrary, the theorem is proved.

5. A weak version of Skolem–Mahler–Lech

Without using the Skolem–Mahler–Lech theorem, it follows from Theorem 1

that the density of the zero set of a recurrence sequence (fn) exists. We can

show a bit more with our approach. Recall, however, that we only deal with

real sequences, whereas the Skolem–Mahler–Lech theorem holds for any field of

characteristic zero.
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Proposition 12: The density of the zero set of a (real) recurrence sequence

(fn) is a rational number.

Proof: Let k be a natural number, and let g, Gn, and sn be as in the proof of

Theorem 1. If k is such that (Gn) ≡ 0, then the density of the zero set of (fgn+k)

is rational, since we may assume inductively that the density of {n: sn = 0} is

rational.

Now suppose (Gn) 6≡ 0. The zero set of (fgn+k) can be partitioned as

{n ∈ N: Gn = sn} = {n: Gn = sn, |Gn| < ε} ∪ {n: Gn = sn, |Gn| ≥ ε},

where ε ≥ 0 is arbitrary. The latter set is finite, and the first one is contained

in Sε, defined in (4). Hence

δ({n ∈ N: Gn = sn}) ≤ δ(Sε)

for all ε ≥ 0. But we know that limε→0 δ(Sε) = 0 from the proof of Theorem 1,

which yields

δ({n ∈ N: Gn = sn}) = 0.

Thus, the zero sets of all subsequences (fgn+k)n≥0, 0 ≤ k < g, have rational

density, which proves the desired result.

6. Conclusion

There is no algorithm known that decides, given a recurrence sequence (fn),

whether fn > 0 for all n, nor has the problem been shown to be undecidable.

When we are talking about algorithmics, it is natural to assume that the re-

currence coefficients and the initial values are rational numbers. In this case

Gourdon and Salvy [5] have proposed an efficient method for ordering the char-

acteristic roots w.r.t. their modulus. Thus, the dominating characteristic roots

can be identified algorithmically. If none of them is real positive, then we know

that the sequence oscillates by Theorem 2. On the other hand, sequences where

a positive dominating root is accompanied by complex dominating roots seem

to pose difficult Diophantine problems. For instance, we do not know if the

sequence

(7) fn := cos(2πθn) + 1 +

(
−1

2

)n

is positive for θ = 3
√

2, say. It is positive for n ≤ 105. It can be shown, however,

that the set of θs for which the corresponding sequence (fn) (defined by (7)) is

eventually positive has measure one [4, Theorem 7.2].
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